Difference between revisions of "APF6 SP The full howto"
m (→Span extender) |
(→Generate bitstream with Quartus) |
||
(28 intermediate revisions by 2 users not shown) | |||
Line 17: | Line 17: | ||
This howto is designed for : | This howto is designed for : | ||
* [[APF6_SP|APF6D_SP-M1GE4G-4m-BW-C4M384]]: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips | * [[APF6_SP|APF6D_SP-M1GE4G-4m-BW-C4M384]]: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips | ||
− | * '''Quartus | + | * Quartus with following versions: |
− | ** To install Quartus | + | ** '''Quartus 17.0.0''' : Quartus 17 without update |
+ | ** '''Quartus 19.1''' : Quartus Intel version | ||
+ | ** To install Quartus see [[Quartus_installation_on_Linux | this page]]. | ||
[[File:APF6_SP_full_howto.png|frame|center|The full design for this howto]] | [[File:APF6_SP_full_howto.png|frame|center|The full design for this howto]] | ||
Line 26: | Line 28: | ||
* Open the "New Project Wizard" in Quartus | * Open the "New Project Wizard" in Quartus | ||
* Select a directory for the design, for example ''/home/your_name/workspace'' and a project name ''apf6_the_full_howto'': | * Select a directory for the design, for example ''/home/your_name/workspace'' and a project name ''apf6_the_full_howto'': | ||
− | * Then Choose ''Empty Project'' and don't add any file yet -> press " | + | * Then Choose ''Empty Project'' and don't add any file yet -> press "Next" |
− | + | * Select the part number : '''5CGXFC4C7U19C8''' -> press "Next" -> "Next" -> "Finish" | |
− | * Select the part number : '''5CGXFC4C7U19C8''' | + | * Right click on "Cyclone V -> Devices..." in project navigator and click on '''Device and Pin Options''' |
− | * | + | |
* in '''CvP Settings''' set this options: | * in '''CvP Settings''' set this options: | ||
** Configuration via Protocol: '''Core initialization and update''' | ** Configuration via Protocol: '''Core initialization and update''' | ||
Line 36: | Line 37: | ||
= Make the Qsys project = | = Make the Qsys project = | ||
− | * Open Qsys: '''Tools'''->'''Qsys''' | + | * Open Qsys/Platform designer: |
+ | ** With Quartus 17: '''Tools'''->'''Qsys''' | ||
+ | ** With Quartus 19.1: '''Tools'''->'''Platform designer''' | ||
* Delete the component '''clk_0''' then save the Qsys project as : '''qsys_tfht.qsys''' | * Delete the component '''clk_0''' then save the Qsys project as : '''qsys_tfht.qsys''' | ||
* Click on '''Finish''' and generate the component with all options left by default | * Click on '''Finish''' and generate the component with all options left by default | ||
Line 51: | Line 54: | ||
Interface Protocols | Interface Protocols | ||
PCI Express | PCI Express | ||
− | Avalon-MM Cyclone V Hard IP for PCI Express | + | Avalon-MM Cyclone V Hard IP for PCI Express |
+ | Avalon-MM Cyclone V Hard IP for PCI Express Intel FPGA IP <- 19.1 | ||
</pre> | </pre> | ||
* "Add" it to design. | * "Add" it to design. | ||
Line 67: | Line 71: | ||
* click on "Finish" | * click on "Finish" | ||
− | * Export these signals with name in '''bold''' (right click in "Hierarchy", then choose "Connections" and "Export as:...": | + | * Export these signals with name in '''bold''' (right click in "Hierarchy", then choose "Connections" and "Export as:..."). Exported signals will be accessible on top of module: |
** refclk : '''refclk''' | ** refclk : '''refclk''' | ||
** npor: '''npor''' | ** npor: '''npor''' | ||
Line 79: | Line 83: | ||
PCI Express | PCI Express | ||
Altera PCIe Reconfig Driver | Altera PCIe Reconfig Driver | ||
+ | Altera PCIe Reconfig Driver Intel FPGA IP <- 19.1 | ||
</pre> | </pre> | ||
* Connect previous IP signals with: | * Connect previous IP signals with: | ||
Line 91: | Line 96: | ||
Transceiver PHY | Transceiver PHY | ||
Transceiver Reconfiguration Controller | Transceiver Reconfiguration Controller | ||
+ | Transceiver Reconfiguration Controller Intel FPGA IP <- 19.1 | ||
</pre> | </pre> | ||
* Connect previous PCIe IP signals with: | * Connect previous PCIe IP signals with: | ||
** '''coreclkout''' -> '''mgmt_clk_clk''' | ** '''coreclkout''' -> '''mgmt_clk_clk''' | ||
** '''nreset_status''' -> '''mgmt_rst_reset''' | ** '''nreset_status''' -> '''mgmt_rst_reset''' | ||
− | ** '''reconfig_mgmt''' -> '''reconfig_mgmt''' | + | ** reconfig_driver.'''reconfig_mgmt''' -> '''reconfig_mgmt''' |
** reconfig_driver.'''reconfig_busy''' -> '''reconfig_busy''' | ** reconfig_driver.'''reconfig_busy''' -> '''reconfig_busy''' | ||
** pci.'''reconfig_to_xcvr''' -> '''reconfig_to_xcvr''' | ** pci.'''reconfig_to_xcvr''' -> '''reconfig_to_xcvr''' | ||
Line 115: | Line 121: | ||
Memory Interfaces with UniPHY | Memory Interfaces with UniPHY | ||
DDR3 SDRAM Controller with UniPHY | DDR3 SDRAM Controller with UniPHY | ||
+ | DDR3 SDRAM Controller with UniPHY Intel FPGA IP <- 19.1 | ||
</pre> | </pre> | ||
Line 168: | Line 175: | ||
** press "Finish" | ** press "Finish" | ||
− | * Connect following | + | * Connect following PCIe IP signals to extender one: |
** '''coreclckout''' -> '''clock''' | ** '''coreclckout''' -> '''clock''' | ||
** '''nreset_status''' -> '''reset''' | ** '''nreset_status''' -> '''reset''' | ||
− | |||
− | |||
** '''Rxm_BAR0''' -> '''cntl''' | ** '''Rxm_BAR0''' -> '''cntl''' | ||
*** Change base address of cntl to '''0x0000_4000''' | *** Change base address of cntl to '''0x0000_4000''' | ||
+ | ** '''Rxm_BAR1''' -> '''windowed_slave''' | ||
+ | * And following extender signals to DDR3 one: | ||
+ | ** '''expanded_master''' -> mem_if_ddr3_emif_0.'''avl_0''' | ||
− | == Adding the button and | + | == Adding the button and LED (PIO) == |
− | Documentation of the PIO component can be found [https:// | + | Documentation of the PIO component can be found [https://www.altera.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/nios2/n2cpu_nii51007.pdf here]. |
* In IP Library select: | * In IP Library select: | ||
Line 186: | Line 194: | ||
Peripherals | Peripherals | ||
PIO (Parallel I/O) | PIO (Parallel I/O) | ||
+ | PIO (Parallel I/O) Intel FPGA IP <- 19.1 | ||
</pre> | </pre> | ||
* Configure it with these options: | * Configure it with these options: | ||
Line 194: | Line 203: | ||
** checkbox '''Generate IRQ''' | ** checkbox '''Generate IRQ''' | ||
** IRQ Type: '''EDGE''' | ** IRQ Type: '''EDGE''' | ||
− | * click on | + | * click on "Finish" |
− | * export ''external_connection'' to '''pio''' | + | * export ''pio.external_connection'' to '''pio''' |
* Connect following signals: | * Connect following signals: | ||
− | ** '''coreclkout''' -> '''clk''' | + | ** '''coreclkout''' -> '''pio_0.clk''' |
− | ** '''nreset_status''' -> '''reset''' | + | ** '''nreset_status''' -> '''pio_0.reset''' |
− | ** '''Rxm_BAR2''' -> '''s1''' | + | ** '''Rxm_BAR2''' -> '''pio_0.s1''' |
− | ** '''irq''' -> '''Rxmirq''' | + | ** '''pio_0.irq''' -> '''Rxmirq''' |
== Qsys component schematic == | == Qsys component schematic == | ||
Line 214: | Line 223: | ||
= Generate bitstream with Quartus = | = Generate bitstream with Quartus = | ||
− | * Make a first synthesis, | + | * Make a first synthesis, in ''Task'' window, right click on ''Analysis & Synthesis'' then choose ''Start'' |
<pre class="config"> | <pre class="config"> | ||
Compile Design | Compile Design | ||
+ Analysis & Synthesis | + Analysis & Synthesis | ||
</pre> | </pre> | ||
− | + | {{Note| If you have a synthesis error here with 19.1 be sure that you are using your [[Quartus_installation_on_Linux#Perl_Getopt::Long | perl distribution]].}} | |
== Pinout == | == Pinout == | ||
* PCIe | * PCIe | ||
− | ** | + | ** Outside Quartus, create a file named '''pcie_pinout.tcl'' and edit it with your favorite text editor. |
** Copy all lines from [[APF6_SP_DDR3_PINOUT#PCIe| here]]. | ** Copy all lines from [[APF6_SP_DDR3_PINOUT#PCIe| here]]. | ||
− | ** Save then add | + | ** Save your file, then add it to the project inside Quartus |
** Run the script with following menu, select it then '''run''': | ** Run the script with following menu, select it then '''run''': | ||
<pre class="config"> | <pre class="config"> | ||
Line 232: | Line 241: | ||
</pre> | </pre> | ||
* DDR3 | * DDR3 | ||
− | ** Create a file named '''ddr3_pinout.tcl'' and edit it. | + | ** Create a file named '''ddr3_pinout.tcl''' and edit it. |
− | ** Copy all lines from [[APF6_SP_DDR3_PINOUT#DDR3| here]] (Pinout placement '''and''' Technology pinout). | + | ** Copy all lines from [[APF6_SP_DDR3_PINOUT#DDR3| here]] ('''Pinout placement''' and '''Technology pinout'''). |
** Save then add the file to project | ** Save then add the file to project | ||
** Run the script with following menu, select it then '''run''': | ** Run the script with following menu, select it then '''run''': | ||
Line 260: | Line 269: | ||
$ find . -name "*_p0_pin_map.tcl" | xargs sed -iolt "/_mem_if_ddr3_emif_0_p0_get_input_clk_id {/a return \$pll_output_node_id" | $ find . -name "*_p0_pin_map.tcl" | xargs sed -iolt "/_mem_if_ddr3_emif_0_p0_get_input_clk_id {/a return \$pll_output_node_id" | ||
</pre> | </pre> | ||
− | {{Note| | + | {{Note| This is the [[DDR3-CycloneV_interface_description#The_DDR3_clock_hack | DDR3 clock hack]], each time synthesis is relaunched, this shell line must be relaunch}} |
* Right click on ''Assembler (Generate programming files)'' then '''Start''' | * Right click on ''Assembler (Generate programming files)'' then '''Start''' | ||
* Convert bitstream to rbf with menu: | * Convert bitstream to rbf with menu: | ||
Line 280: | Line 289: | ||
tmp/apf6_the_full_howto/output_files/tfht.periph.rbf | tmp/apf6_the_full_howto/output_files/tfht.periph.rbf | ||
</pre> | </pre> | ||
+ | |||
+ | {{Note| These bitstreams can be found under armadeus distribution in directory `firmware/tfht/bitstreams` }} | ||
= Linux BSP configuration = | = Linux BSP configuration = | ||
Line 292: | Line 303: | ||
[*] pcidebug | [*] pcidebug | ||
</pre> | </pre> | ||
+ | {{Note | On current Armadeus BSP, pcidebug is already installed by default}} | ||
* Then make the binaries and [[Target_Software_Installation |flash it]] on the apf6_sp. | * Then make the binaries and [[Target_Software_Installation |flash it]] on the apf6_sp. | ||
* Adding the rbf file to your [[Communicate_with_your_board_from_a_Linux_Host_(Basics)#TFTP_server | tftpboot]] directory. | * Adding the rbf file to your [[Communicate_with_your_board_from_a_Linux_Host_(Basics)#TFTP_server | tftpboot]] directory. | ||
Line 401: | Line 413: | ||
</pre> | </pre> | ||
− | * Quit | + | * Quit: |
<pre class="apf"> | <pre class="apf"> | ||
PCI> quit | PCI> quit | ||
+ | </pre> | ||
+ | * then reconnect pci_debug to change for bar1: | ||
+ | <pre class="apf"> | ||
$ pci_debug -s 01:00.0 -b1 | $ pci_debug -s 01:00.0 -b1 | ||
</pre> | </pre> | ||
Line 486: | Line 501: | ||
** How to drive it from Linux | ** How to drive it from Linux | ||
− | Some subjects are not covered by this tutorial: | + | Some subjects '''are not covered by''' this tutorial: |
* Managing PCIe interrupts | * Managing PCIe interrupts |
Latest revision as of 14:56, 12 November 2019
Contents
Introduction
This is the full howto make an APF6_SP CycloneV example design which uses :
- PCIe
- DDR3
- General Purpose Input/Outputs
- LED
- Button
This howto is designed for :
- APF6D_SP-M1GE4G-4m-BW-C4M384: APF6_SP Dual with CycloneV C4 (speed C8) and two DDR3 chips
- Quartus with following versions:
- Quartus 17.0.0 : Quartus 17 without update
- Quartus 19.1 : Quartus Intel version
- To install Quartus see this page.
Make the quartus project
- Open the "New Project Wizard" in Quartus
- Select a directory for the design, for example /home/your_name/workspace and a project name apf6_the_full_howto:
- Then Choose Empty Project and don't add any file yet -> press "Next"
- Select the part number : 5CGXFC4C7U19C8 -> press "Next" -> "Next" -> "Finish"
- Right click on "Cyclone V -> Devices..." in project navigator and click on Device and Pin Options
- in CvP Settings set this options:
- Configuration via Protocol: Core initialization and update
- then select "OK" two times
Make the Qsys project
- Open Qsys/Platform designer:
- With Quartus 17: Tools->Qsys
- With Quartus 19.1: Tools->Platform designer
- Delete the component clk_0 then save the Qsys project as : qsys_tfht.qsys
- Click on Finish and generate the component with all options left by default
- Under Quartus project add the Qsys project (don't forget to click on add after selected here).
- Right click on qsys_tfht.qsys and set as Top-Level Entity
- Relaunch Qsys by double-clicking on the file in "Project Navigator"
Adding the PCIe and CvP
- In IP Catalog select the component:
Library Interface Protocols PCI Express Avalon-MM Cyclone V Hard IP for PCI Express Avalon-MM Cyclone V Hard IP for PCI Express Intel FPGA IP <- 19.1
- "Add" it to design.
- PCIe configuration:
- Number of Lanes: x1
- Reference clock frequency: 125Mhz
- check Use 62.5 MHz application clock
- check Enable configuration via the PCIe link
- BAR0: 32-bit non-prefetchable memory
- BAR1: 32-bit non-prefetchable memory
- BAR2: 32-bit non-prefetchable memory
- Vendor ID: 0x00001172
- Device ID: 0x0000e001
- Class Code: 0x00001300: there is a bug in quartus, the actual class code is here 13
- click on "Finish"
- Export these signals with name in bold (right click in "Hierarchy", then choose "Connections" and "Export as:..."). Exported signals will be accessible on top of module:
- refclk : refclk
- npor: npor
- hip_serial: hip_serial
- connect Rxm_BAR0 on Cra (always right click in "Hierarchy", then "Connections"...)
- Add CvP component reconfig driver, with all default parameters:
Library Interface Protocols PCI Express Altera PCIe Reconfig Driver Altera PCIe Reconfig Driver Intel FPGA IP <- 19.1
- Connect previous IP signals with:
- coreclkout -> reconfig_xcvr_clk
- coreclkout -> pld_clk
- nreset_status -> reconfig_xcvr_rst
- Add CvP component transceiver, with all default parameters:
Library Interface Protocols Transceiver PHY Transceiver Reconfiguration Controller Transceiver Reconfiguration Controller Intel FPGA IP <- 19.1
- Connect previous PCIe IP signals with:
- coreclkout -> mgmt_clk_clk
- nreset_status -> mgmt_rst_reset
- reconfig_driver.reconfig_mgmt -> reconfig_mgmt
- reconfig_driver.reconfig_busy -> reconfig_busy
- pci.reconfig_to_xcvr -> reconfig_to_xcvr
- pci.reconfig_from_xcvr -> reconfig_from_xcvr
- you should end up with the following wiring:
Adding the DDR3
UniPHY controller
- In the IP catalog, select:
Library Memory Interfaces and Controllers Memory Interfaces with UniPHY DDR3 SDRAM Controller with UniPHY DDR3 SDRAM Controller with UniPHY Intel FPGA IP <- 19.1
- Select checkbox Enable Hard External Memory Interface
- In tab PHY Settings configure:
- Speed Grade: 8
- Memory clock frequency: 375Mhz
- PLL reference clock frequency: 62.5Mhz
- Rate on Avalon-MM interface: Full
- supply Voltage: 1.35V DDR3L
- In tab Memory Parameters
- In "Presets" (right of the window) select: JEDEC DDR3-1G6 2GB X8 and apply
- Memory device speed grade: 400Mhz
- Total interface width: 24
- Row address width: 14
- In tab Controller Settings
- checkbox: Generate power-of-2 data bus widths for Qsys or SOPC Builder
- checkbox: Enable Configuration and Status Register Interface (Internal JTAG)
- checkbox: Enable Error Detection and Correction Logic
- Click on Finish
- Connect following signals:
- coreclkout -> pll_ref_clk
- coreclkout -> mp_cmd_clk_0
- coreclkout -> mp_rfifo_clk_0
- coreclkout -> mp_wfifo_clk_0
- coreclkout -> csr_clk
- nreset_status -> global_reset
- nreset_status -> soft_reset
- nreset_status -> mp_cmd_reset_n_0
- nreset_status -> mp_rfifo_reset_n_0
- nreset_status -> mp_wfifo_reset_n_0
- nreset_status -> csr_reset_n
Span extender
DDR3 memory is to large for PCIe BAR domain. Then we have to use a span extender to adapt PCIe BAR domain to DDR3 domain.
- Select span expander in IP Library:
Library Basic Functions Bridges and Adaptors Memory Mapped Address Span Extender
- Configure it with these options:
- Datapath Width: 64bits
- Slave Word Address Width: 20bits
- press "Finish"
- Connect following PCIe IP signals to extender one:
- coreclckout -> clock
- nreset_status -> reset
- Rxm_BAR0 -> cntl
- Change base address of cntl to 0x0000_4000
- Rxm_BAR1 -> windowed_slave
- And following extender signals to DDR3 one:
- expanded_master -> mem_if_ddr3_emif_0.avl_0
Adding the button and LED (PIO)
Documentation of the PIO component can be found here.
- In IP Library select:
Library Processors and Peripherals Peripherals PIO (Parallel I/O) PIO (Parallel I/O) Intel FPGA IP <- 19.1
- Configure it with these options:
- Width: 2
- Direction: Bidir
- checkbox Synchronously capture
- Edge Type: RISING
- checkbox Generate IRQ
- IRQ Type: EDGE
- click on "Finish"
- export pio.external_connection to pio
- Connect following signals:
- coreclkout -> pio_0.clk
- nreset_status -> pio_0.reset
- Rxm_BAR2 -> pio_0.s1
- pio_0.irq -> Rxmirq
Qsys component schematic
The resulting schematics should give the figure below.
Now click on finish and generate the component with all default parameters kept.
Generate bitstream with Quartus
- Make a first synthesis, in Task window, right click on Analysis & Synthesis then choose Start
Compile Design + Analysis & Synthesis
Note: If you have a synthesis error here with 19.1 be sure that you are using your perl distribution. |
Pinout
- PCIe
- Outside Quartus, create a file named 'pcie_pinout.tcl and edit it with your favorite text editor.
- Copy all lines from here.
- Save your file, then add it to the project inside Quartus
- Run the script with following menu, select it then run:
Tools TCL Scripts ...
- DDR3
- Create a file named ddr3_pinout.tcl and edit it.
- Copy all lines from here (Pinout placement and Technology pinout).
- Save then add the file to project
- Run the script with following menu, select it then run:
Tools TCL Scripts ...
- Button & Led
- Open the pinplanner by double-click in tasks:
Compile Design Analysis & Synthesis I/O Assignment Analysis Pin Planner
- For button pio_export[0] select Location column and set it to : PIN_L9
- For led pio_export[1] select Location column and set it to : PIN_M10
- Close the Pin Planner
Synthesis, Place & route
- Right click on Analysis and Synthesis then Start
- Open a Linux console terminal then go to your project directory and type this:
$ cd ~/tmp/apf6_the_full_howto $ find . -name "*_p0_pin_map.tcl" | xargs sed -iolt "/_mem_if_ddr3_emif_0_p0_get_input_clk_id {/a return \$pll_output_node_id"
Note: This is the DDR3 clock hack, each time synthesis is relaunched, this shell line must be relaunch |
- Right click on Assembler (Generate programming files) then Start
- Convert bitstream to rbf with menu:
File Convert Programming Files...
- set these options:
- Programming file type: Raw Binary File (.rbf)
- Change the name to : output_files/tfht.rbf
- Select SOF Data in Input files to convert then click on Add File...
- add the file apf6_the_full_howto.sof in directory output_files
- checkbox Create CvP files (Generate tfht.periph.rbf and tfht.core.rbf)
- click on Generate
- These files should be present on directory output_files:
ls -l tmp/apf6_the_full_howto/output_files/*.rbf tmp/apf6_the_full_howto/output_files/tfht.core.rbf tmp/apf6_the_full_howto/output_files/tfht.periph.rbf
Note: These bitstreams can be found under armadeus distribution in directory `firmware/tfht/bitstreams` |
Linux BSP configuration
Note: This is not an Armadeus BSP tutorial, the BSP is supposed to be installed and compiled according to this explains |
- Get a compiled BSP with following configuration : apf6_defconfig
- Add PCI debug package with make menuconfig
Target packages ---> Hardware handling ---> [*] pcidebug
$ cp -v output_files/tfht.*.rbf /tftpboot/ ‘output_files/tfht.core.rbf’ -> ‘/tftpboot/tfht.core.rbf’ ‘output_files/tfht.periph.rbf’ -> ‘/tftpboot/tfht.periph.rbf’
Note: Refer to PCIe FPGA loading to understand FPGA configuration with PCIe |
- In U-Boot download the periph.rbf and configure FPGA (don't forget to configure your tftp server ip):
BIOS> tftpboot ${loadaddr} 192.168.0.214:tfht.periph.rbf BIOS> fpga load 0 ${loadaddr} ${filesize}
- Boot Linux
BIOS> boot ... apf6 login: root
- The three BARx should be seen with lspci command :
# lspci -v -s 01:00.0 01:00.0 Unclassified device [0013]: Altera Corporation Device e001 (rev 01) Flags: fast devsel, IRQ 341 Memory at 01800000 (32-bit, non-prefetchable) [disabled] [size=32K] Memory at 01000000 (32-bit, non-prefetchable) [disabled] [size=8M] Memory at 01808000 (32-bit, non-prefetchable) [disabled] [size=32] Capabilities: [50] MSI: Enable- Count=1/4 Maskable- 64bit+ Capabilities: [78] Power Management version 3 Capabilities: [80] Express Endpoint, MSI 00 Capabilities: [100] Virtual Channel Capabilities: [200] Vendor Specific Information: ID=1172 Rev=0 Len=044 <?>
- Configure network:
$ udhcpc
- Download core:
$ tftp -g -r tfht.core.rbf 192.168.0.214
- Load the core bitstream:
$ load_fpga tfht.core.rbf Altera CvP 0000:01:00.0: enabling device (0140 -> 0142) Altera CvP 0000:01:00.0: Found and enabled PCI device with VID 0x1172, DID 0xE001 successfully init Altera CVP with major 248 Altera CvP 0000:01:00.0: Now starting CvP... Altera CvP 0000:01:00.0: CvP successful, application layer now ready 8212+1 records in 8212+1 records out
User access to FPGA
DDR3
- DDR3 is accessible via the BAR1, connect to BAR1:
$ pci_debug -s 01:00.0 -b1
- Read first values of DDR3:
PCI> d32 0 20 00000000: AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA 00000010: 55555555 55555555 55555555 55555555
- Write values, then read back:
PCI> c32 0 CAFEDECA PCI> c32 8 CACABEBE PCI> d32 0 20 00000000: CAFEDECA AAAAAAAA CACABEBE AAAAAAAA 00000010: 55555555 55555555 55555555 55555555
- Exit pci_debug
PCI> quit
Only first 8MB (0x800000) are accessible for the moment, to access next 8MB, the span extender must be configured on BAR0.
- Access BAR0 and configure span extender:
$ pci_debug -s 01:00.0 -b0
- Read the span extender windows value at address 0x4000:
PCI> d32 4000 1 00004000: 00000000
- Write the new required value :
PCI> c32 4000 800000 PCI> d32 4000 1 00004000: 00800000
- Quit:
PCI> quit
- then reconnect pci_debug to change for bar1:
$ pci_debug -s 01:00.0 -b1
- Read value :
PCI> d32 0 20 00000000: 6B2171EA DFA5DA76 6CFB3F47 7AF9F526 00000010: DBD85BAB 7F56CF7A 78FAD73B ECF997FE
- Write some values:
PCI> c32 0 12345678 PCI> c32 4 9ABCDEF0 PCI> c32 10 12345678 PCI> c32 14 9ABCDEF0 PCI> d32 0 20 00000000: 12345678 9ABCDEF0 6CFB3F47 7AF9F526 00000010: 12345678 9ABCDEF0 78FAD73B ECF997FE
- Etc...
PIO (Button and led)
As seen on the first schematic of this tutorial, the PIO is plugged on the BAR2 of the PCIe.
- Then first, connect to BAR2 with pci_debug:
$ pci_debug -s 01:00.0 -b2
Button
- Read all PIO registers:
PCI> d32 0 8 00000000: 00000001 00000000
- Leave button pressed and read again:
PCI> d32 0 8 00000000: 00000000 00000000
led
- set PIO[1] (led) as output:
PCI> c32 4 2
- Turn on led
PCI> c32 0 2
- Turn off led:
PCI> c32 0 0
Conclusion
This tutorial should give you the basics to use the CycloneV soldered on the APF6_SP module. Now you should know:
- PCIe:
- How to instanciate the CycloneV hard IP
- How to read/write data with it from Linux with simple access
- DDR3:
- How to instanciate and configure the UniPHY hard IP
- How to connect it to PCIe
- How to read/write simple data
- Simple I/O:
- How to instanciate a simple port for I/O under Qsys
- How to drive it from Linux
Some subjects are not covered by this tutorial:
- Managing PCIe interrupts
- Write a Linux driver
- Increase data bandwidth with PCIe-DMA (up to 140MB/s)
- From the FPGA to the i.MX6
- From the i.MX6 to the FPGA
- Create a custom Qsys component
- Using Serializer/Deserializer
- And more ...
If you are interested in a specific subject, please contact Armadeus System they should do somethings for you.