Une led qui clignote avec le spartan 3
Pour me faire la main avec le kit et surtout avec le fpga je me suis mis en tête de faire clignoter le une led du fpga. Pour cela je me suis un peu inspiré du montage proposé FPGA_and_led que j'ai modifié pour pouvoir tester ensuite la led en capteur de lumière.
L'intérêt du clignotement d'une led est relativement limité, cependant il permet de prendre en main la totalité de la chaine de développement sur la carte Armadeus.
Après avoir installé le Xilinx Web Pack généreusement offert par Xilinx, il suffit de réaliser un compteur qui divisera la fréquence de l'horloge de manière à avoir un clignotement de quelques Hertz (La fréquence du spartan3 étant de 96MHz nous diviserons par 48000000 !).
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.all;
entity Clk_div_led is
Port ( Clk : in std_logic;
led_cathode : out std_logic;
led_anode : out std_logic);
end Clk_div_led;
architecture RTL of Clk_div_led is
constant max_count : natural := 48000000;
signal count : natural range 0 to max_count;
signal Rst_n : std_logic;
begin
Rst_n <= '1';
-- compteur de 0 à max_count
compteur : process(Clk)
begin
if Rst_n = '0' then
count := 0;
led_anode <= '1';
led_cathode <= '0';
elsif rising_edge(Clk) then
if count < max_count/2 then
led_anode <='1';
led_cathode <='0';
count <= count + 1;
elsif count < max_count then
led_anode <='0';
led_cathode <='0';
count <= count + 1;
else
count <= 0;
led_anode <='1';
led_cathode <='0';
end if;
end if;
end process compteur;
end RTL;
Pour que ISE puisse savoir sur quels pins brancher chaque signal, il est nécessaire de lui fournir un fichier de contraintes en *.ucf :
NET "Clk" LOC = "P55"; NET "Clk" TNM_NET = "Clk"; TIMESPEC "TS_Clk" = PERIOD "Clk" 10 ns HIGH 50 %; NET "led_cathode" LOC = "P119"| IOSTANDARD = LVCMOS33 ; NET "led_anode" LOC = "P118"| IOSTANDARD = LVCMOS33 ;
Des exemples de ucf peuvent être trouvés dans le répertoire firmware du projet Armadeus.
Une fois que ces deux fichiers sont écrits il suffit de générer le bitstream en double cliquant sur "Synthetize - XST" puis sur "Implement Design" et enfin "Generate Programming File". Si ces opérations se sont bien passées, on se retrouve avec un fichier Clk_div_led.bit (du nom du vhdl).
C'est à partir de maintenant que les ennuis commencent (ou les choses intéressante c'est selon). Il faut télécharger le bitstream dans le fpga. Pour cela j'ai utilisé UBoot, en ayant bien pris soin de configurer le réseau correctement comme expliqué sur la page Connection_with_U-Boot_on_Linux.
il faut donc mettre le bitstream dans le répertoire tftpboot :
cp Clk_div_led.bit /tftpboot
Puis via la carte armadeus, le télécharger en ram :
BIOS> tftpboot 08000000 Clk_div_led.bit dm9000 i/o: 0x15c00000, id: 0x90000a46 MAC: 00:0e:32:00:00:01 operating at 10M half duplex mode TFTP from server 192.168.0.143; our IP address is 192.168.0.10 Filename 'Clk_div_led.bit'. Load address: 0x8000000 Loading: T ########################## done Bytes transferred = 131029 (1ffd5 hex)
L'enregistrer en flash :
BIOS> run flash_firmware .. done Erased 2 sectors Copy to Flash... done Flashing Firmware succeed
Puis le lancer en utilisant l'adresse du fpga mappée en 0x10060000 (voir Target_Software_Installation) et la taille du bitstream donnée au moment du téléchargement (Bytes transferred = 131029 (1ffd5 hex)) :
BIOS> fpga load 0 010060000 1ffd5
Si vous ne voulez pas flasher le bitstream à chaque fois, vous pouvez le charger directement depuis la ram via la commande:
BIOS>fpga load 0 08000000 1ffd5
Et voila, si tout c'est bien passé, la led clignote ...